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A multilayer feedforward neural network (MLFN) technique is adopted for
developing a viscosity equation g=g(T, r) for R123. The results obtained are
very promising, with an average absolute deviation (AAD) of 1.02% for the
currently available 169 primary data points, and are a significant improvement
over those of a corresponding conventional equation in the literature. The
method requires a high-accuracy equation of state for the fluid to be known to
convert the experimental P, T into the independent variables r, T, but such
equation may not be available for the target fluid. With a view to overcoming
this difficulty, a viscosity implicit equation of state in the form of T=T(P, g),
avoiding the density variable, is obtained using the MLFN technique, starting
from the same data sets as before. The prediction accuracy achieved is compar-
able with that of the former equation, g=g(T, r).

KEY WORDS: 2,2-dichloro-1,1,1-trifluoroethane; feedforward neural net-
works; R123; viscosity correlation techniques; viscosity equation.

1. INTRODUCTION

The state of the art of viscosity surface representation, on which the
present work focuses, suggests at least two approaches for its calculation.
First, predictive or semipredictive models can be used. These models are
often based on corresponding-states theory [1–4], and, in many cases, they
are capable of estimating the property with an accuracy level sufficient for
engineering calculations.

Alternatively, dedicated viscosity equations can be used which are
based on the residual concept superimposing three parts: the dilute gas, the



excess terms, and the critical enhancement. This technique is essentially
correlative and requires experimental data distributed as evenly as possible
over the whole thermodynamic PrT surface. Generally speaking, these
equations are in the form g=g(T, r), where g, T, and r are the viscosity,
absolute temperature, and density, respectively. In conventional dedicated
viscosity equation development, the coefficients are not obtained from
direct experimental data regression. Since the viscosity data are inevitably
related to the experimentally accessible (T, P) variables, an equation of
state is needed to convert (T, P) into (T, r). Moreover, viscosity data at
pressures approaching zero have to be extrapolated to fit the coefficients of
the dilute-gas term in the viscosity equation. Because the final correlation
relies only on the available data, this poses the question of whether a
completely empirical correlation g=g(T, r) could be developed directly
from data alone.

The aim of the present work is to develop two viscosity equations, the
first explicit and the second implicit in g, based directly on experimental
data through a multilayer feedforward neural network (MLFN), which can
be considered one of the most powerful and flexible regression techniques
for function approximation.

The study is devoted to 2,2-dichloro-1,1,1-trifluoroethane (R123), for
which a conventional dedicated viscosity equation has already been devel-
oped [5], thus enabling a comparison of the results. In addition, a large
number of data is available for refrigerants.

2. DEDICATED VISCOSITY EQUATION

2.1. Conventional Technique

According to the residual viscosity concept [6], a viscosity correlation
is expressed in the following form:

g(T, r)=g0(T)+DgR(T, r)+Dgc(T, r), (1)

where g0(T) is the dilute-gas term representing the zero-density limit of the
gas viscosity. Some theoretical guidance on the analytical form of this term
can be derived from the kinetic theory of gases. This term has to be treated
independently of the other two, the data required for regressing the coeffi-
cients are obtained at atmospheric pressure or below, and it is common to
extrapolate such data to the zero-density limit.
DgR(T, r) is the residual or excess function for the calculation of

which the dilute gas and the critical enhancement terms must be subtracted
from the actual viscosity value. Experience shows that third- or higher-order
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polynomials of reduced density are often suitable forms for representing
this term, disregarding temperature dependence, particularly when the
database is limited. For polar fluids in the vapor phase, the quantity
(“g/“r)T depends on the temperature and it is positive for higher T and
negative for lower T. As a consequence, more complex analytical forms for
the excess function are needed.

The critical enhancement term Dgc(T, r) describes the behavior of a
fluid in the critical region, where the transport properties are influenced by
long-range fluctuations. The critical enhancement of the transport proper-
ties can be described by a crossover theory [7, 8]. This term has only a
modest influence on viscosity, and then only when very close to the critical
point; it is consequently not taken into account in this work.

To calculate any g=g(T, P) value, an equation of state is necessary
for variable conversion. Considering how sensitive viscosity is to density in
the dense phase, such an equation has to be very accurate.

2.2. Dedicated Viscosity Equations for R123

Tanaka and Sotani [5] developed a dedicated viscosity equation for
R123 using the conventional procedure. To convert the (T, P) variables
into (T, r), they adopted the MBWR-32 equation of state from Younglove
and McLinden [9].

Tanaka and Sotani [5] regressed the dilute-gas function from data
measured at atmospheric pressure. Because viscosity data under this con-
dition are lacking, they generated further values by means of the Chapman–
Enskog equation. In this way, they obtained a polynomial representation of
g0(T). The critical enhancement term was neglected since no experimental
data are available close to the critical point.

Regarding the excess term, DgR(T, r) was split into two parts:

DgR(T, r)=g1(T) r+Dhg(r) (2)

where g1(T) r takes into account the density dependence at low density
values. This is a polynomial with coefficients fitted to vapor viscosity data.
The term Dhg(r) is the high-density contribution, the form of which is a
third-degree polynomial combined with a hyperbolic term. For the analy-
tical forms and the coefficient values, reference can be made to the original
article [5]. The validity ranges of the Tanaka and Sotani viscosity equation
are 253 [ T [ 423 K and 0 [ r [ 1608 kg ·m−3. According to the authors,
the final equation gives an uncertainty of 1.17% for the primary data and
2.25% for the total data sets.
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3. NEURAL NETWORKS

In the preceding sections it was pointed out that

(a) although the structure of the conventional viscosity equation
sounds theoretically well-based, experimental data distributed
over the whole PrT surface are needed to regress the coefficients
of the three contributions;

(b) it is by no means easy to find the most suitable analytical form
for representing the density dependence of the residual term;

(c) the fitting procedure is not direct from the data, which have to be
converted to split the influences of the three terms; and

(d) a highly accurate equation of state is needed for converting the
measured variables (T, r) into (T, P).

Because experimental data covering the whole PrT surface are needed
for the development of a conventional viscosity equation dedicated to a
target fluid, it seems reasonable to test a single correlative technique based
directly on all the available data. Clearly, the analytical form of the new
model has to prove highly flexible in fitting the experimental viscosity
surface of a generic fluid. The optimal characteristics expected for this form
are (a) an a priori known form and (b) a unique and suitable form for a
larger number of target fluids. It was established during the preliminary
stages that neural networks, applied as function approximators, have
demonstrated the required characteristics to a high degree.

A new correlation technique is proposed here, based on neural networks.
The heart of the problem is to fit such a correlation on the available visco-
sity data for developing a neural network viscosity equation. Among neural
network architectures, the MLFN with only one hidden layer seems to be
the most effective as a universal approximator of continuous functions in a
compact domain [10–12]. In this architecture there are several neuron
layers (multilayer) and the information goes in only one direction, from
input to output (feedforward), i.e., from left to right in Fig. 1. This figure
shows the general architecture of a MLFN with a hidden layer, which is
the analytical tool used in the present work as a viscosity equation model.

The I−1 inputs Ui enter the I−1 neurons of the input layer. The
inputs Ui represent the independent variables of the problem. The input
information is not manipulated by the input layer neurons; it is only
transmitted. The last neuron, at the number I, receives Bias 1. The J
neurons of the hidden layer receive the weighted sum of signals from the
input layer. A nonlinear transfer function is applied to this sum. The
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Fig. 1. General architecture of a multilayer feedforward network.

neuron number J+1 receives only the bias value. If Hj is the output of the
j hidden layer, this is

Hj=f 1 C
I

i=1
wijUi 2 , 1 [ j [ J (3)

HJ+1=Bias 2 (4)

where f is the transfer function and wij are the weighting factors. Finally,
the K neurons of the output layer receive the weighted sum of signals from
the hidden layer and, once again, apply a nonlinear transfer function to the
sum. The outputs Sk represent the dependent variables of the problem. If Sk is
the output of the output layer, i.e., the final output of the MLFN, this is

Sk=f 1 C
J+1

j=1
wjkHj 2 , 1 [ k [K (5)

Though the architecture is fixed, the MLFN is very flexible because
both the number of neurons in the hidden layer J and the form of the
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transfer function f can be chosen. The input I and the output K neuron
numbers depend on the kind of problem to be solved. In addition, the two
matrices of the weighting factor, wij[I×J] and wjk[(J+1)×K], have to
be defined case by case. When J and f have been chosen, the weighting
factors can be fitted on some sets of known outputs. This regression step is
called a training step. Bias 1 and Bias 2 are two constants able to make the
convergence easier and faster during fitting.

Some criteria have to be kept in mind in the choice of the transfer
function f. This has to be a continuous and derivable function, and it has
to be limited. The choice of the analytical form of f does not affect the
performance of the MLFN (which depends strictly on the weighting factors
wij and wjk), but it does affect the training procedure. The transfer function
used in the present work has a sigmoid form:

f(x)=a
1

1+e−2bx
(6)

Two positive parameters have been applied in Eq. (6) to make the
function’s behavior more flexible: a changes the activation span and b
determines the steepness of the sigmoid function. As a consequence of the
choice of a transfer function, Eq. (6), Sk [ a for every k=1, K. In addition,
the training step is easier if all the inputs are of the same magnitude. That
is why both input and output values are compressed here within the same
range by Eqs. (7)–(10) and (13).

The analytical form of the present MLFN is

f(x)=a
1

1+e−2bx
(6)

g(x)=ln(x+1) (7)

ui=
Amax −Amin

Vmax, i−Vmin, i
, 1 [ i [ I−1 (8)

sk=
Amax −Amin

g(Wmax, k)−g(Wmin, k)
, 1 [ k [K (9)

Wk=exp 5Sk−Amin

sk
+g(Wmin, k)6−1, 1 [ k [K (10)

Sk=f 1 C
J+1

j=1
wjkHj 2 , 1 [ k [K (11)
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Hj=f 1 C
I

i=1
wijUi 2 , 1 [ j [ J (12)

HJ+1=Bias 2

Ui=ui(Vi−Vmin, i)+Amin, 1 [ i [ I−1 (13)

UI=Bias 1

where J is the number of neurons in the hidden layer, Amin and Amax are the
allowable range limits of the compressed input variables, Vmin, i and Vmax, i

are the limits of the independent input variables for the training set, and
Wmin, k and Wmax, k are the limit values of the output functions. The quantity
Vi is the independent variable, and Wk is the dependent variable. Due to the
characteristics of the present problem, the MLFN parameters are set here
to the following values:

I=3, Bias 1=1.0, Amin=0.05, a=1.0

K=1, Bias 2=1.0, Amax=0.95, b=0.005

In this way the input variables and the output function have both been
compressed in the range 0.05 to 0.95. To complete the MLFN definition,
the following parameters have to be calculated for each target fluid
through a training step: J, Vmin, i, Vmax, i, Wmin, k, Wmax, k, wij, and wjk. Since
the MLFN architecture is always the same, its connotative contents are in
general the number of hidden layers, the number of nodes, and the
matrixes of weighting factors wij and wjk. It has been established that a
single hidden layer suffices for representing a continuous function. The
number J of neurons in the hidden layer has to be found by subsequent
trials; this number has to minimize the residual error during the training
procedure. In addition, for each number of hidden layer nodes, two
matrixes, wij and wjk, of coefficients have to be found. Determining the
optimum number of hidden nodes and fitting the two matrixes wij, wjk are
part of the training procedure.

Given an experimental data set of output Sk, in the independent
variables Ui, the weighting factors are found by minimizing the following
objective function by means of an optimization procedure.

fob=
1
K

C
K

k=1
(Scalc
k −Sexp

k )2 (14)
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As in any optimization process, the optimized parameter set must not
depend on the algorithm assumed and several methods have to be tested
for the same equivalent result.

4. VISCOSITY NEURAL NETWORK EQUATIONS

Since an MLFN is a mathematical function that links some inputs
with some outputs, it seems reasonable to correlate viscosity data with the
independent variables using this technique. To verify the approximating
capability of an MLFN regarding a viscosity equation, as a preliminary
test we generated viscosity data from the Tanaka–Sotani equation [5] and
trained the neural network on those data.

In our case, Eqs. (6)–(13), considering that I=3 and K=1, it becomes

V1=Tr, V2=rr, W1=gr (15)

where the reducing critical parameters are Tc=456.831 K, Pc=3.6618 MPa,
and rc=550 kg ·m−3. The viscosity reducing factor is Hc=(M1/2P2/3c /
R1/6N1/3

A T1/6c )=27.8509 mPa · s where M is the molecular mass, R is the
universal gas constant, and NA is the Avogadro number.

The viscosity data generated amounted to 3674 points; 460 were used
in the training step and the remainder for validating the MLFN equation
obtained. The generated data enabled a regression of the parameters of the
neural network. With reference to the previous paragraph, the optimum
number of neurons in the hidden layer in this case is J=10. The weighting
factors are 30 for the first matrix, wij, and 11 for the second matrix wjk, for a
total of 41 weighting factors. The values of the weighting factor (wij and wjk)
matrixes are the fluid specific MLFN viscosity parameters.

Of the generated data, 3214 were used for validating the equation,
which resulted in an average absolute deviation (AAD) of 0.096%, a bias
of 0.003%, and a maximum deviation of 0.94%. These results suggest that
the MLFN is a very valuable tool for fitting a viscosity surface.

The data are generally classified as primary or secondary, and only the
former are used in the correlation regression. The guidelines for the screening
procedure are discussed in specialized textbooks, e.g., Ref. 6. In the present
work, due partly to the paucity of the R123 experimental data available,
the screening procedure adopted was as follows. We maintained as primary
the data considered by Tanaka and Sotani as primary in developing their
equation, even if they were measured at temperatures and pressures outside
the validity range of their equation. We tested all available experimental
viscosity data versus the dedicated Tanaka–Sotani equation and included
all data with deviations of less than 6%. We also included data that were
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not considered by Tanaka and Sotani, such as the data provided by
Mayinger [17]. The data screened in this way were considered primitive.
Using these data, a first neural network version was regressed. After this
preliminary screening the first neural network was tested versus the primi-
tive data. Avoiding the experimental points with deviations higher than
2%, a finer screening was done to identify the primary data, amounting to
169 in all, over which the final viscosity MLFN equation was fitted.

After the data screening, the weighting factors of the MLFN equation—
which are the new viscosity equation parameters for R123 in the general
form g=g(T, r)—can be obtained. In addition to considering a viscosity
equation of the previous form,

g=g(T, r) (16)

which has to be coupled with an equation of state for variable conversion,
an equation system such as the one below could be written [13]:

3 g=g(T, r)
P=P(T, r)

(17)

From this system a functional form F(P, T, g)=0 could be derived,
avoiding density as a variable and consequently not requiring the use of a
high-accuracy equation of state for the target fluid. From such an F form,
we propose extracting the functional form,

T=T(P, g) (18)

by means of the former MLFN technique, always based exclusively on the
experimental data. The other possible form P=P(T, g) has been discarded
due to the higher difficulty of training the MLFN, while the form
g=g(T, P) cannot be considered for the whole surface, because at satura-
tion for a given T, PS(T) input couple, i.e., temperature, the two viscosity
values gSliq, g

S
vap have to be output. The new functional form, Eq. (18), is

called here the viscosity equation of state because it merges a viscosity
equation and a thermodynamic equation of state.

Following the preceding procedure the two proposed MLFNs have
been obtained and their parameters are listed in Table I. For the viscosity
explicit equation V1=Tr, V2=rr, and W1=gr, while for the temperature
explicit equation V1=Pr, V2=gr, and W1=Tr. In the latter case the filter
function g(x), Eq. (7), is applied to V2 instead of W1.

The validity ranges for both new viscosity equations are 170 [ T [

423 K, 4.5 [ r [ 1760 kg ·m−3, and 7×10−6 [ P [ 34 Mpa.
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The validation of the two new viscosity equations is reported in
Table II, together with comparison with the Tanaka–Sotani dedicated
equation. The data are split into primary and secondary sets as discussed
previously. The primary set has been used for the training step, and conse-
quently, the corresponding AADs are to be considered the residual errors
of the correlations. Regarding the temperature explicit equation, the training
residual AAD (Table I) refers to the temperature, which is the dependent
variable. In Table II the AAD is calculated for viscosity values. Some
further references are cited in the work of Tanaka and Sotani, but they
considered them as secondary sources. In addition, we have not found
those references, and consequently we have neglected the related data.
Between data from Mayinger and Nabizadeh [17, 18] and data from
Takahashi and Yokoyama [21, 22], a discrepancy of between 3.5 and
8.25% was found at pressures higher than 1 MPa in the vapor phase and
the reason may be the kind of viscometer used. Consequently, the sources
[17, 18] have been considered secondary.

5. CONCLUSIONS

A new method has been proposed for the development of a dedicated
viscosity equation and has been applied to refrigerant R123, for which a
former conventional dedicated equation was available. The new method is
based on the multilayer feedforward network technique, which has been
demonstrated to be a powerful and flexible universal function approxima-
tor and has been able to reproduce with high accuracy the viscosity surface
of the former conventional equation. The method is completely correlative
and based directly on the available viscosity data. Two viscosity functions
are proposed here: the first is viscosity explicit, g=g(T, r), and the other is
temperature explicit, T=T(P, g), and does not require a high accuracy
equation of state for the variable conversion. The validity ranges of both
equations are 170 [ T [ 423 K, 4.5 [ r [ 1760 kg ·m−3, and 7×10−6 [ P [

34 MPa, which correspond to the primary data boundaries. The obtained
accuracy on primary data for both equations is in the AAD range of 1 to
1.1%, which is a significant improvement with respect to the conventional
equation. This work shows that neural networks are promising tools for
transport property equation development.
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